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Abstract

We have used multiple linear regression to predict either initial rate, log initial rate or specificity for enzyme-catalyzed
reactions performed in non-aqueous solvents. The Subtilisin Carlsberg catalyzed transesterification of N-acetyl-L-phenyl-
alanine ethyl ester by methanol, 1-propanol, and 1-butanol was assayed in 30 non-aqueous solvents, and the lipase catalyzed
transesterification of methyl methacrylate in 23 non-aqueous solvents. Both sets of reactions were performed at fixed
thermodynamic water activity. The lipase catalyzed reactions were also performed in water saturated solvents and in dry
solvents. The report illustrates that regression analysis may provide insight into how solvents can alter the activity and
specificity of enzymes suspended therein. A regression model for the subtilisin catalyzed reaction suggests that solvents
which have a flat hydrophobic region inhibit by competing with the substrate for an enzyme cleft. In the lipase catalyzed

Ž .reaction, tetrachloroethylene is an outlier i.e., behaves differently to other solvents for all the regression models. This
deviation, together with an element of structural similarity to the substrate, suggests that tetrachloroethylene acts as a
competitive inhibitor. Log P is an important descriptor and it, or an expression containing log P, appears in all the
regression equations. Log initial rate is predicted by a two-descriptor model for either enzyme system in solvents of high log
P at fixed thermodynamic water activity. Regression models with the same two descriptors predict initial rate for the lipase
system over the entire log P range for solvents maintained at fixed thermodynamic water activity and for dry solvents, but
not for water saturated solvents. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

For over a decade there has been a concerted
attempt to correlate the properties of organic
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solvents to the function of biocatalysts sus-
w xpended therein 1–3 . This tour de force of

research in non-aqueous enzymology has, how-
ever, yet to yield a predictive equation which
correlates the variation of activity or specificity
of multiple enzyme–substrate pairs to solvent
properties. Indeed, it is rare that a prediction
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holds when even only the substrate is changed
w xin a system 4,5 .

Physical properties from solvent dipole mo-
w x w xment 6,7 to dielectric constant 8–10 and log

w x ŽP 11–13 the logarithm of the octanolrwater
.partition coefficient for a solvent have all been

suggested as parameters which should be stud-
ied to guide the choice of a solvent for use with
anhydrous biocatalysts, but no single parameter
provides the elixir for those wishing to predict
enzyme activity or specificity.

w xIt has recently been demonstrated 14 that
the initial rate for the subtilisin catalyzed trans-
esterification of N-acetyl-L-phenylalanine ethyl
ester by either methanol, 1-propanol, or 1-
butanol can be modeled with a high level of
predictability by a single equation in which log
P and the non-polar unsaturated area, for each
of the organic solvents, are the independent
variables. This equation emerged from a study
of the above reaction in 30 non-aqueous sol-

Table 1
Lipase activity at different levels of water saturation

Ž .Solvent Initial rate mMrh

Water Dry Constant
saturated activity

1,1,1-Trichloroethane 0.186 0.05 0.167
2-Chlorotoluene 0.285 0.112 0.26
Bromobenzene 0.247 0.0592 0.32
Butyl acetate 0.00283 0.0046 0.006
Butyl ether 0.318 0.066 0.25
Benzene 0.183 0.06 0.19
Carbon tetrachloride 0.17 0.13 0.325
Dichloromethane 0.00486 0.00031 0.0054
Chloroform 0.0184 0.00025 0.000226
1-Chlorobutane 0.203 0.0728 0.21
Chlorobenzene 0.197 0.105 0.247
Cyclohexane 0.309 0.17 0.538
1,4-Dioxane 0.00881 0.00038 0.008
Ethyl acetate 0.00343 0.00029 0.00716
Ethylbenzene 0.314 0.12 0.316
Heptane 0.3 0.17 0.572
Hexane 0.359 0.19 0.481
Nonane 0.342 0.246 0.73
Octane 0.315 0.235 0.626
Propyl acetate 0.00228 0.00015 0.00471
Toluene 0.357 0.147 0.37
Fluorobenzene 0.162 0.059 0.161

vents. The equation is highly predictive only for
those solvents that have log P values greater
than 2.0. The same report illustrated that sub-
strate specificity can be modeled with a moder-
ate level of predictability. It is our belief that
similar predictive equations can be found for
many enzyme-catalyzed reactions in organic
solvents, provided that a sufficiently large set of
solvents is studied to confer statistical validity
to these equations.

In the current report we discuss the data for
three substrates of the commonly studied en-
zyme subtilisin, and one substrate with a lipase
in order to determine if regression equations can
be modeled for each of the systems using sol-
vents with a wide range of log P values. The
latter enzyme was studied with water saturated
solvents, with anhydrous solvents, and with sol-
vents of constant water activity.

2. Materials and methods

The description of the Subtilisin catalyzed
reaction, and the experimental data, has been

w xpublished elsewhere 14 .
ŽLipase from Candida rugosa 860 unitsrmg

. Žsolid was purchased from Sigma. A unit of
activity was defined as that which would hydro-
lyze 1.0 microequivalent of fatty acid from olive

.oil in 1 h at pH 7.2 at 378C. All organic
solvents were purchased from Aldrich Chemical
Ž .Milwaukee, WI and were of the highest purity
available. All solvents were dried using molecu-

˚Ž .lar sieves 3 A . The water content of each
solvent was determined by Karl Fischer titration
in a Fisher Coulomatic apparatus. The rates for
the lipase catalyzed reactions are listed in Table
1.

3. Activity studies in organic solvents

The following is typical of all the enzyme-
catalyzed reactions that were studied. Enzyme

Ž .powder 20 mgrml was added to 2 ml of
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organic solvents containing 100 mM 2-ethyl-
hexanol and 100 mM methyl methacrylate in a
4-ml Wheaton vial. Thereafter, the enzyme sus-
pension was sonicated for 20 s before placing it

Ž . Žinside a shaker 300 rmp New Brunswick,
.G-24 incubatorrshaker which was kept at 408C.

At regular intervals, 0.5 ml samples were taken
from the reaction mixture and injected into the
gas chromatograph for analysis. Reaction rates
were determined by following the formation of
2-ethylhexyl methacrylate using a gas chro-

Žmatograph HP series II, equipped with cross
linked methyl silicone capillary column and an

.FID detector . Initial rates were determined from
the slopes of the linear regression plots of 2-eth-
ylhexyl methacrylate formation vs. time, using

Ž .Sigma plot Jandel Scientific .
A constant water activity of 0.59 at 408C was

achieved by adding 0.2 grml Na P O P10H O4 2 7 2
w x2,15 to each of the organic solvents.

4. The physical properties of the solvents

The following physical properties were con-
sidered as potential solvent descriptors: solvent-

Ž .accessible non-polar saturated area NPSA ,
solvent-accessible non-polar unsaturated area
Ž .NPUA , solvent-accessible polar surface area
Ž .PSA , polarizability, dipole moment, log P,
density, molecular volume, dipolarityrpolar-

Ž U. Ž .izability p , hydrogen bond donor ability a ,
Ž .and hydrogen bond acceptor ability b . The

descriptors in Table 2 are those included in one
or more of the regression models in this report.

The values of log P were literature shake-
w xflask values 16 , values calculated by the

w xCLOGP methods as described by Leo 17 with
Biobyte’s MacLog P 1.0, or Ghose–Crippen
values as calculated by Spartan 4.0. Log P is a
particularly important descriptor in the regres-
sion models discussed in this report. In order to
evaluate which of the above values were the
best for this study, shake-flask and computer

Ž .generated both Maclog P and Ghose–Crippen

Table 2
Physical properties of organic solvents

UaSolvent NPUA Dipole log p

2˚Ž .A moment P
y3 0Ž .=10 cm

1,1,1-Trichloroethane 0.0 1.76 2.49 0.49
2-Chlorotoluene 38.9 1.56 3.42 –

bAcetone 0.0 2.92 y0.24 0.71
Bromobenzene 45.1 1.70 2.99 0.79
Butyl acetate 0.0 1.60 1.78 0.50
Butyl ether 0.0 1.17 3.21 0.24
Benzene 45.9 0.00 2.13 0.59
Tetrachloroethylene 15.1 0.00 3.40 0.28
Carbon tetrachloride 0.0 0.00 2.83 0.28
Dichloromethane 0.0 1.60 1.25 0.82

bAcetonitrile 16.7 2.89 y0.34 0.75
bNitromethane 0.0 4.17 y0.35 0.85

Chloroform 0.0 1.01 1.97 0.58
1-Chlorobutane 0.0 2.05 2.64 0.39
Chlorobenzene 42.1 1.69 2.89 0.71
Cyclohexane 0.0 0.00 3.44 0.00
N, N-dimethylformamide 0.0 3.55 y1.01 0.88
1,4-Dioxane 0.0 0.00 y0.27 0.55
Ethyl acetate 0.0 1.78 0.73 0.55
Ethylbenzene 45.5 0.59 3.15 –
Heptane 0.0 0.00 4.66 y0.08
Hexane 0.0 0.00 3.90 y0.08

bTriethylamine 0.0 0.96 1.45 0.14
tert-Butylamineb 0.0 1.46 0.40 –
Nonane 0.0 0.00 5.81 y0.08
Octane 0.0 0.00 5.18 y0.08
Propyl acetate 0.0 1.61 1.24 –

bPyridine 41.7 1.97 0.65 0.87
bTetrahydrofuran 0.0 1.92 0.46 0.58

Toluene 43.7 0.36 2.73 0.54
cFluorobenzene 44.5 1.57 2.27 –

a Non-polar unsaturated area.
b Not used with lipase.
c Not used with subtilisin.

values were used to build regression models for
all the systems discussed below. Both the
Shake–flask and Maclog P values yielded very
similar models with only small differences in
regression coefficients and values of R2. The
latter values were generally higher than the
corresponding values for models with the
Ghose–Crippen log P values. Shake-flask log
P values were used for the regression models in
this report.

The methods for computing dipole moment,
polarizability and the solvent-accessible surface
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w xareas were described in a previous report 14 .
The solvent-accessible area was first defined by

w xLee and Richards 18,19 as the locus of the
center of a solvent ‘sphere’ which is rolled over
the van der Waals surface of the solute. This

Ž .area may be partitioned into polar the PSA
and non-polar components, and the latter may
be further divided into the accessible surface
area contributed by saturated atoms and that
contributed by unsaturated atoms such as the

Žcarbons in an alkene or aromatic compound the
.NPUA . Monovalent atoms attached to the un-

saturated atoms of benzene are classified as
w xsaturated in the algorithm used 18 . As an

example, toluene has contributions from both a
Žsaturated region the methyl group and ring

. Žhydrogens and an unsaturated region the ring
.carbons contributing to the total non-polar sur-

face area.

5. Data analysis

Ž .Ordinary forwards stepwise regression,
whereby the model is built one term at a time,
was performed using SAS for Windows, version

Ž .6.11, SAS Institute . The descriptor that corre-
lates most highly with the dependent variable is
the first to be inserted in the linear regression

Ž .equation hereafter referred to as the model ,
provided that it is significant at a specified
level. In this study the 90% level was used. For

Fig. 1. Flow chart illustrating the stepwise mode of multiple linear regression.
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most models, however, all terms were signifi-
cant at a much higher level. The procedure then
finds the descriptor that has the highest partial
correlation with the dependent variable, ad-
justed for the presence of the first descriptor. If
this partial correlation is significant at the speci-
fied level it is included in the model, otherwise
the stepwise procedure stops. The procedure
checks whether the significance of the term
initially inserted is affected by the additional
term. If the initial term fails the significance test
it is eliminated from the model. The procedure
is then continued in a similar manner for the
remaining descriptors, until no term to be added
is significant at the desired level. The overall
procedure is illustrated in Fig. 1.

The regression models described in this re-
Ž .port with two exceptions noted in the text all

Ž .have values of the mean squared error MSE in
the range 0.0007–0.06. These low values of the
MSE indicate that it is reasonable to expect a
good predictability from these models.

The MSE is defined as:
n

2eÝ i
is1MSEs 1Ž .

nypy1

Žwhere e is the ith residual a residual is thei

difference between the observed and predicted
.value of the dependent variable , n is the num-

Žber of observations i.e., the number of sol-
.vents , and p is the number of descriptors.

6. Results and discussion

Transesterification was studied using both
subtilisin and lipase, in a series of organic sol-
vents that have a wide range of physical proper-
ties. The effect that these solvents have on
initial rate was studied for both enzymes, while
the effect on specificity was studied only for
subtilisin.

The amount of water present in these systems
substantially influences the kinetics of the reac-

tion and for this reason was carefully controlled.
In both the lipase and the subtilisin systems this
was achieved by adding Na P O P10H O. In4 2 7 2

addition the lipase system was studied both in a
series of anhydrous and a series of water satu-
rated solvents. While there are some similarities
in the regression models describing the results
in the two enzyme systems, there are also sig-
nificant differences, and for this reason the sys-
tems are discussed separately.

7. Subtilisin

The following Subtilisin catalyzed transester-
ification was studied in the series of 30 solvents
listed in Table 2, using methanol, 1-propanol or
1-butanol as the alcohol.

N-acetyl-L-phenylalanine ethyl esterqalcohol

™ N-acetylyL yphenylalanine alkyl ester

qethanol

The activity of an enzyme in a non-aqueous
solvent depends on the amount of bound water.

ŽHydrophilic solvents i.e., solvents of low log
.P can distort the way this water is associated

with the enzyme and can adversely affect the
activity of an enzyme. Laane has suggested that
this distortion of the way that water is bound
accounts for the diminished activity of enzymes
in non-aqueous solvents with log P values less

w xthan 2.0 20 .
Only poor regression models, for predicting

log initial rate for the above transesterification,
are obtained for the complete set of 30 solvents.

w xAs previously demonstrated 14 , a good model
is obtained for each of the three substrates when
the reaction is performed in 16 solvents with log
P values greater than 2.0. This value of log P
was selected based on the observation of Laane
noted in the previous paragraph. The model is:

log nsyaqb log Pyc NPUA 2Ž .
where NPUA is the non-polar unsaturated area
associated with the aromatic solvents and with
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tetrachloroethylene. The values of R2 were in
the range 0.8944–0.9426 with methanol having
the lowest and 1-butanol the highest value. R2

Žmeasures the percentage expressed as a propor-
.tion of the total variability in the dependent

variable that can be accounted for by its linear
relationship with the descriptors. Thus for 1-
butanol the model explains 94% of the variation
Ž .with change of solvent of log initial rate about

w 2the mean. The R values are slightly different
to those reported previously. That report used

Ž .computed Mac log P values, and was for a set
xof 15, rather than 16, solvents.

A cleft is present in subtilisin, and the sub-
w xstrate slots into this cleft during reaction 21 .

Other molecules with a flat hydrophobic region
should also be capable of fitting into this cleft.
The only solvents in this study which have such
a flat region are the benzene derivatives, pyri-
dine and tetrachloroethylene. These are also the

Ž .only molecules of log P greater than 2.0 that
have a value for the NPUA. The negative value

Ž .of NPUA in Eq. 1 is apparently indicative of
these solvents competing with the phenylalanine
substrate for a position in the cleft. This illus-
trates the manner by which a model obtained by
multiple linear regression can provide insight
into how a solvent can modulate enzyme activ-

wity. This argument holds only for common
solvents. It would not hold for compounds such
as buckminsterfullerene which has a non-planar

xNPUA.
This interpretation is concordant with data

for subtilisin obtained by a completely different
approach. A survey of the Brookhaven X-ray
crystallographic database found that five differ-
ent inhibitors with a flat hydrophobic region slot
into the same cleft on the surface of subtilisin.
This is illustrated in Fig. 2 for L-napthyl-1-
acetamido boronic acid where the naphthyl
group is partially embedded in a cleft on the
surface of the enzyme. The latter is depicted
using its solvent-accessible surface, with the
inhibitor drawn as a CPK model.

We suggest that the rate of transesterification
is affected in at least two different ways when

Fig. 2. The top panel shows the Subtilisin Carlsberg L-napthyl-1-
acetamido boronic acid inhibitor complex. The lower left panel is
a close-up showing the inhibitor fitting into the cleft of the
protein. The lower right panel shows the inhibitor with the planar
naphthyl group highlighted in black.

the enzyme is suspended in each of a series of
solvents of increasing log P. The more substan-
tial of these is a large increase in rate with
increasing log P. The second is a relatively
small diminution of rate superimposed on the
increase noted above, and may be related to
decreasing flexibility of the enzyme in solvents
of high log P. This latter effect is discussed in
the following paragraphs.

Water can be more highly ordered when in
contact with a non-polar molecule such as an

w xalkane 22 , than when in contact with a polar
molecule. We suggest that the same ordering
effect holds for the enzyme bound water when
the enzyme is suspended in a non-polar solvent
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Ž .of high log P . We also suggest that the
greater ordering of the enzyme-bound water
molecules confers a degree of structural inflexi-
bility to the enzyme. These assumptions lead to
the following interpretation of the above regres-
sion model.

ŽFig. 3 is a plot of the residuals i.e., the
differences between experimental and predicted

.values for log initial rate using 1-butanol. The
Ž .figure was constructed using Eq. 2 to predict

the log rate in all 30 solvents, even though only
16 of log P greater than 2.0 were used in
generating the equation. There is a clear trend
of increasing residuals with decreasing log P,
which indicates that this enzyme exhibits a
greater activity than predicted by the regression

Žequation in the solvents of lowest log P even
though the absolute activity is lowest in these

.solvents . If it is assumed that this change is not
associated with the amount of protein-bound

Ž .water since we are at constant water activity ,
it may be related to a different ordering of this
water depending on the polarity of the solvent
in which the enzyme is suspended. We suggest
that, in the more hydrophobic solvents, the wa-
ter assumes a relatively ordered structure in
which there is minimal hydrogen bonding be-
tween water and solvent molecules. Such a
structure would in turn confer a degree of rigid-
ity to the enzyme which would be the same for

Ž .Fig. 3. Residuals for Eq. 2 plotted against log P, for butanol as
Ž .substrate. The plot is for all solvents, but Eq. 2 was derived for

solvents with log P greater than 2.0.

all solvents of sufficient hydrophobicity. Fig. 3
suggests that this would occur for solvents with
log P greater than 2.0. This diminished enzyme
flexibility would result in a lower activity than
in water.

Consider now what happens when the en-
zyme is suspended in each of a series of sol-
vents of successively lower log P, i.e., in a
series of solvents of increasing hydrophilicity.
Below a log P value of approximately 2.0,
there will be an increasing interaction between
solvent and enzyme-bound water molecules with
each successive solvent of lower log P. This
increase will result in decreasing order in these
water molecules which will result in greater
flexibility of the enzyme. This in turn will result

Ž .in greater activity than predicted by Eq. 2 , as
shown by the positive residuals in Fig. 3. It
must be emphasized that, although the residuals
are positive for solvents of low log P, the
absolute activity of the enzyme is lowest in
these solvents.

Models for predicting initial rate were of
poorer fit than those for predicting log initial
rate. Even with solvents of log P greater than
2.0, the values of R2 are in the range 0.66–0.88,
and log P is the only descriptor that enters the
model.

w xIn our earlier report 14 , it was shown that a
Ž .plot of specificity n rn against logmethanol butanol

P was approximately bell shaped. The follow-
ing descriptor models a symmetrical bell shaped
curve centered at m and having inflection points
at m"s.

2log Pym
y ž /xse 3Ž .s

In addition to modeling specificity, x is also a
useful descriptor for modeling log rate. m and s
are constants that are determined by a least
squares optimization of the non-linear relation-

Žship between each specificity or initial rate or
.log initial rate and x . Thus the values of m

and s are specific for a given system. The value
of the above descriptor is increasing in log P,
for log P-m, and decreasing for log P)m.
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Log initial rate is predicted for each of the
three substrates by the following model, when
the transesterification is performed in 16 sol-
vents with log P greater than 2.0:

log nsaybxyc NPUA 4Ž .
The values of the coefficients and R2 are:
Methanol—as0.62, bs4.02, cs0.02, R2 s
0.9449; 1-Propanol—as1.27, bs4.62, cs
0.02, R2 s0.9421; 1-Butanol, asy0.05, bs
3.08, cs0.01, R2 s0.9528.

In these models the x term is significant at
the 99.99% level, and the NPUA term is signifi-
cant at a level greater than 99.6%. The intercept
is highly significant for methanol and 1-pro-
panol, but is insignificant for 1-butanol. A com-

Ž . Ž .parison of Eqs. 2 and 4 indicates that x acts
as a surrogate for log P in the prediction of

Ž .initial rate. The regression fits with Eq. 4 are
Ž .better than those with Eq. 2 . The latter two

equations may be reconciled by noting that for
log P)m, x decreases with increasing log P.
This is the case for all models for solvents with
log P)2.0, because the values of m-2.0 for
each of the three substrates. The term yx then

Ž .becomes less negative i.e., more positive as
log P increases.

8. Specificity

We define specificity as the ratio:

k rKcat m 1
Specificitys 5Ž .

k rKcat m 2

where 1 and 2 are the members of a substrate
w xpair. Because we determine initial rate at S <

K , and because the term for enzyme concentra-m

tion is the same in both numerator and denomi-
w xnator 22 , the ratio of initial rates simplifies to

the ratios of k rK .cat m

One of the descriptors used for predicting
specificity is p

U, which is a solvatochromic
descriptor for the dipolarityrpolarizability of a

w xmolecule 23 . This spectroscopically derived
w xdescriptor has been widely used 24–26 in

studies ranging from modeling reaction kinetics
w x27,28 to predicting chromatographic retention
w x U29–31 . p values were available for only 14
of the solvents with log P greater than 2.0.
The regression model below applies to both
n rn and n rn .methanol propanol methanol butanol

Specificitysaqbxqcp
U 6Ž .

where a, b and c are regression coefficients
which are different for each of the two specifici-
ties. The model for n rn has a valuemethanol propanol

of R2 of 0.9434, and for the n rnmethanol butanol

model the value of R2 is 0.8365. The MSE
Ž .0.11 for the former model is not as good as
the corresponding values for the other regres-
sion equations in this report, but is still consid-
ered satisfactory. While the corresponding value

Ž .for the n rn model is too high 3.2methanol butanol

to allow confident prediction, it is nevertheless
satisfying that the two regression equations for
specificity have identical descriptors.

9. Lipase

The following Lipase catalyzed transesterifi-
cation was studied in a series of 23 solvents.

Methyl methacrylateq2-ethyl-1-hexanol

™ methanolq2-ethylhexyl methacrylate

The solvents were either dry, water saturated or
maintained at a constant water activity by incor-
porating Na P O P10H O in the reaction mix-4 2 7 2

ture. These are referred to as the Dry, the Water
Saturated, and the Constant Activity series, re-
spectively.

The initial attempt to construct regression
models predicting either initial rate or log initial
rate resulted in only mediocre values of R2 for
each of the systems. Inspection of the residuals
for these models showed that the data point for
tetrachloroethylene is an outlier. It is unlikely
that this is due to experimental error as tetra-
chloroethylene was used in three independent
experiments. This solvent was dropped from the
study which is restricted to the 22 other sol-
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vents. Tetrachloroethylene was not an outlier in
the subtilisin study, and in fact was a solvent

Ž .with a low residual for the regression Eq. 2 .
The atypical behavior of this solvent may be
due to competitive inhibition resulting from an
element of structural similarity to the substrate.
Both tetrachloroethylene and methyl methacryl-
ate are 1,1-disubstituted ethylene compounds.

As is the case for the subtilisin catalyzed
transesterification, the best regression model for
predicting log initial rate in the constant water
activity series is obtained for the more hy-
drophobic solvents. The following model is for
the 15 solvents with log P greater than 2.2:

log nsy0.74q1.07 log Py0.13m

R2 s0.8982 7Ž .

The models predicting log initial rate in either
the dry or the water saturated series of solvents
were not satisfactory irrespective of the range of
hydrophobicities considered.

In contrast to the model predicting initial rate
in the subtilisin series, the corresponding model
in either the Dry or the Constant Water Activity
series has a relatively high R2 and applies to

Žthe complete set of 22 solvents considered log
.P rangesy0.27 to 5.81 . The model is:

nsaqb log Pycm 8Ž .

where m is the dipole moment. The value of the
intercept is statistically insignificant in both se-
ries, and is essentially zero. The other two terms
in the models are significant at the 99.92%, or
better, level. The values of the coefficients are:
Dry series—bs0.043, cs0.031, R2 s0.9033;
Constant activity series—bs0.126, cs0.079,
R2 s0.9237.

The values of R2 indicate that in either the
Dry or the Constant Water Activity series, more
than 90% of the total variation of initial rate
results from its relationship with log P and
dipole moment. The initial rate is more sensitive
to the values of the descriptors in the Constant
Water Activity than in the Dry series, as indi-

cated by coefficients that are almost three times
larger in the former series.

There is an apparent anomaly in the applica-
Ž .tion of Eq. 8 to dioxane and ethyl acetate,

where very small negative reaction rates are
predicted. The agreement between predicted and
experimental rates for these solvents is, how-
ever, very good because the experimental values

Ž .are very low less than 0.008 mMrh . These
small negative predicted values are within the
95% prediction intervals for these two solvents.

Ž .The model in Eq. 8 applies also when the
solvents are restricted to the 16 solvents with a
log P value greater than 2.0, in which case the
values of R2 for the Constant Water Activity
and the Dry series are 0.9224 and 0.8704, re-
spectively. It is not surprising that log P effects
are more noticeable in the Dry than in the
Constant Water Activity series of solvents, if
changes in the models are related to stripping of
bound water in hydrophilic solvents. The pres-
ence of the salt hydrate should eliminate the
ability of the hydrophilic solvents to strip bound
water from the enzyme. In contrast to the Con-
stant Water Activity and Dry series, the Water
Saturated series provides unsatisfactory models
for both initial rate and log initial rate. This
suggests that water saturation allows the amount
of bound water to vary with the identity of
solvent, which does not allow for a predictive
regression model.

Ž Ž ..x Eq. 3 , which is a very useful descriptor
in the Subtilisin series, does not enter any of the
models predicting either initial rate or log initial
rate in the Lipase series.

10. Conclusions

This study demonstrates that it is possible to
build good regression models for transesterifica-
tion in non-aqueous solvents catalyzed by sub-
tilisin or lipase, respectively. Log P is an im-
portant descriptor, and all models in this report
include either log P or a descriptor containing
log P. It is likely that good regression models
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will be found also for other enzyme-catalyzed
reactions in non-aqueous solvents.

This report also demonstrates that regression
model can provide insight into solvent–enzyme
interactions. An example is given by the regres-

Ž Ž ..sion model Eq. 2 that gives a possible an-
swer to the question as to why there is not a
uniform increase in reaction rate with increasing
solvent lipophilicity. As interpreted in the text,
the model suggests that solvents having a planar
unsaturated region are able to occupy a cleft in
subtilisin that is adjacent to the active center,
thus hindering access of substrate to the center.
A consideration of the residuals for the above
regression model suggests that there is a
diminution of flexibility of the enzyme when
suspended in solvents of high hydrophobicity.
Another example of such an insight is that the
only solvent that does not fit the regression

Ž .models i.e., is an outlier in the lipase series is
tetrachloroethylene, and it is suggested that the
elements of structural similarity of this solvent

Ž .to the substrate methyl methacrylate results in
its acting as a competitive inhibitor.

There are important differences between the
models for the subtilisin and the lipase series. In
the subtilisin series good models for predicting

Žlog initial rate and mediocre models for pre-
.dicting rate apply only to solvents with log P

values greater than 2.0, whereas in the lipase
series good models for predicting initial rate

Žapply over the complete log P range y0.27 to
.5.81 . A good model for predicting log initial

rate in the lipase constant activity series, how-
ever, applies only to solvents with log P)2.2.
It is intriguing that for this enzyme, initial rate
can be predicted with a high R2 for all 22
solvents, but log initial rate only for 15 solvents.

The fact that either rate, log rate, or speci-
ficity may be predicted with high confidence by
simple regression equations containing, in most
cases, only one or two descriptors, suggests that
these equations have the potential to furnish
insight into the role of the non-aqueous solvents
in these enzyme-catalyzed reactions.
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